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Abstract 

If dispersive atoms are present the structure factor of a 
centrosymmetric crystal is not purely real, and the 
probability distribution of the modulus of the structure 
factor becomes 

P(F)dF = ( 2 F/g) exp ( -Sr2/g2)Io(  SV2//12)dF, 

where I o is the modified Bessel function of zero order, Z' 
is the sum of the squares of the moduli of the atomic 
scattering factors, S is the modulus of the sum of their 
squares, and g is (Z 2 - $ 2 )  1/2. For a non-centro- 
symmetric crystal the form of the distribution is not 
altered, but E must be defined as in the preceding 
sentence. 

Introduction 

Wilson (1949) used the central limit theorem to obtain 
probability distributions for the real and imaginary 
parts of the structure factor, the modulus of the 
structure factor, and the intensity of X-ray reflexions. 
His conscious assumptions were that the number of 
atoms per cell was sufficiently large, that the real and 
imaginary parts of the structure factor were un- 
correlated, and that no atom or small group of atoms 
dominated the scattering. The expressions are thus the 
asymptotic forms for large numbers of atoms, N, per 
unit cell, and there have been many papers dealing with 
modifications needed when the number N is not large, 
when there are dominating atoms present, and when 
symmetry other than P1 or P i  has to be taken into 
account. He also made the unconscious assumption 
that the atomic scattering factors were purely real. The 
expressions for the fourth moment of the moduli of the 
structure factors (Wilson, 1978) are asymptotically 
consistent with the Wilson (1949) distributions for 
non-centrosymmetric crystals, but not for centro- 
symmetric ones; this suggests that the probability 
distribution for dispersive centrosymmetric crystals will 
differ from that for non-dispersive crystals, though it 
does not prove that there will be no difference for 
non-centrosymmetric crystals. 
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The calculation is closely parallel to that of Wilson 
(1949). If the atomic scattering factor of the ith atom is 

f t = f / +  ig i (1) 

and the trigonometric part of the structure factor of the 
Wyckoff position containing the ith atom (Wilson, 
1978) is 

• It = Ji + iKi, (2) 

the contribution of the ith Wyckoff position to the real 
part of the structure factor is 

~l = fiJi -- giKi (3) 

and to the imaginary part is 

~i =f iKi  + giJr (4) 

The mean-square values of these quantities, in the 
notation of Wilson (1949, 1978), are 

a~ = f12 = ½p/(ft2 + g~) = ~ptl ftl2 (5) 

for a non-centrosymmetric crystal, whereas for a 
centrosymmetric crystal (K i -- 0) they are 

a 2 = p, f i  2, (6) 

f l~=pg~. (7) 

The covariance of ~t and qt, zero under the assumptions 
of the Wilson (1949) paper, remains zero for non- 
centrosymmetric structures, but for centrosymmetric it 
becomes 

7 , :  ( ~,rl,) = P,ftg,. (8) 

To the extent that the central limit theorem is 
applicable, therefore, the bivariate distribution of the 
real and the imaginary parts of the structure factor for 
a non-centrosymmetric crystal is unaltered by disper- 
sion, the only change being the 'obvious' one that E is 
the sum of the squares of the moduli of the atomic 
structure factors instead of being the sum of the 
squares of the atomic scattering factors (Wilson, 1942), 
assumed wholly real. The bivariate distribution of the 
structure facior of a centrosymmetric crystal, on the 
other hand, is spread out over the whole complex plane, 
instead of being confined to the real axis (Wilson, 1949, 
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§2.2). The rest of this note is concerned with the 
resultant change in the probability distribution of the 
structure factors of a centrosymmetric crystal. 

We desire, however, to find P(F)dF, the probability 
that F = (x 2 + y2)V2 lies between F and F + dF. With 
the substitution 

Distribution for a dispersive centrosymmetric crystal 

We can write 

A E = Z a ~ ,  (9) 
i 

B: = Z ¢~, (lO) 
i 

as in the first half of equations (11) and (13) of Wilson 
(1949), and define p, the correlation coefficient of the 
real and the imaginary parts of the structure factor, by 

pA B = • Yr (11) 
i 

The sum of the squares of the complex atomic 
scattering factors (Wilson, 1976, 1978)is 

S =  Z p i ( ~ 2 - g ~  + 2ifg~) (12) 
i 

= A 2 -- B 2 + 2ipAB. (13) 

It thus has the magnitude 

S = [ (A 2 - -  B 2 )  2 + 4 p2A2B2]  1/2 (14) 

= [ ( A  2 + B 2 ) 2 - 4 A 2 B 2 ( 1 - p 2 ) ]  v2 (15) 

= (,~2 __ ~/2)1/2, (16) 

where 

lu = 2AB(1 - p2),/2, (17) 

and has the phase fi given by 

tan fi = 2pAB/(A 2 -- B2). (18) 

The central limit theorem (Cram6r, 1945, pp. 285-290)  
then gives, asymptotically in N, the bivariate normal 
distribution for the real part of the structure factor, 

x =  E ~,, (19) 
i 

and the imaginary part, 

Y = Z r/r (20) 
i 

After a little reduction the expression is 

P(x ,y )dxdy  

= (rip)-'  exp I -2 (B2x  2 - 2pABxy A2y2)/lu2} dxdy. 

(21) 

x = F cos ~0, y = F sin ~0, (22) 

we obtain 

P ( F ) d F =  (F/nu) e x p ( - Z F 2 / p  2) 

2n 
x f exp I(S2F2/a2)cos(2~o + 6)}dqxtF. (23) 

0 

The integral gives a modified Bessel function of zero 
order (Abramowitz & Stegun, 1964, equation 9.6.16), 
so that 

P ( F ) d F =  (2F//~) exp(--ZF2/lu2)lo(SF2/p2)dF. (24) 

For non-zero p this behaves quite differently from the 
distribution for a non-dispersive centrosymmetric 
crystal; in particular P(0) is zero, whereas it is 
(2/nZ)  1/2 in the non-dispersive case. By taking the limit 
as p goes to zero the non-dispersive distribution is 
recovered; some care is required. 

The distribution (24) resembles several of those 
found in cases of partial symmetry (Srinivasan & 
Parthasarathy,  1976, chapter III). The closest analogue 
is probably equation 3.84 of Srinivasan & 
Parthasarathy (1976), which is derived for the case of a 
non-centrosymmetric structure containing a centro- 
symmetric group. From the obverse point of view, 
dispersion can be regarded as introducing a certain 
degree of non-centrosymmetry into an otherwise 
centrosymmetric structure. With an appropriate 
reinterpretation of the scaling factors, Srinivasan & 
Parthasarathy 's  (1976) figure 3.10 would serve as a 
representation of the distribution (24) for different 
combinations of Z, S, p. 
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